
1690 | Vol. 17 Issue-10, 2022

DOI: 10.5281/zenodo.7157445

A STUDY OF BEST PRACTICES OF MACHINE LEARNING ALGORITHM IN
SOFTWARE DEVELOPMENT PROCESS

1Dipali Brijpalsingh Tawar , 2Dr. Deepika Pathak
1Research Scholar, Dept. of Computer Application, Dr. A.P.J Abdul Kalam University,

Indore (M.P), India
2Associate Professor, Dept. of Computer Application, Dr. A.P.J Abdul Kalam University,

Indore (M.P), India
1dipali.tawar@gmail.com, 2deepikapathak23@gmail.com

ABSTRACT
The paper gives a data about software performance. The software performance is dissected and
issues are investigated. Mathematical and engineering approaches and models for addressing
performance issues are featured. The approaches to expand software performance are clarified.
Significance of considering various factors here is accentuated. Performance of workers in
undertakings is looked at and a calculation is produced for its enhancement. The created
calculation will build the performance of the undertaking software. Investigations are led with
the created calculation and the nearness of the performance of the undertakings is distinguished
and delineated in the bar outline. A rundown of the best software to improve the performance
is aggregated and broke down. The issue of software optimization is featured. Data on the
necessities to the software optimization projects is given. The article likewise presents the
approaches to build the performance of software engineers and propose strong suggestions here.
A calculated model of software performance is created.
KEYWORDS: Software, Productivity, Optimization, Increase Productivity, Requirements.
INTRODUCTION
Software Engineering is a developing and arising field on the planet since software makes life
more agreeable. Figure 1 shows software engineering originations. The significance of software
is certain. In particular, in the here and now outline, the reality stays that PCs are vital in this
day and age because of their widespread use in pretty much every field of life, particularly in
trade, industry, medication, training, engineering, and agriculture. In the advanced time, data
society is expanding quickly. PCs influence all cycles[1] in the public arena, including logical
examination, economy, and for the most part change the manner in which individuals work and
enter new zones of training. The investigation of new data innovations and their application in
various regions lead to the creation and development of present day frameworks and
programming dialects. The fundamental reason for mechanization is to save the civilization
from latency and to liberate human from deadlines set for the execution of assignments. This is
one of the primary patterns in the development of PC innovation. At the point when a software
engineer has strong information on a programming language utilized for robotization issues,
he/she can undoubtedly oversee on the other information. Also, a developer understands the
construction of the program all the more effectively because of the information acquired. It
ought to likewise be noticed that the investigation of software engineering, which has been a

1691 | Vol. 17 Issue-10, 2022

DOI: 10.5281/zenodo.7157445

field of science for quite a while, is simple at any rate because of the way that programming
permits the program to be applied to PCs for tackling explicit issues. Here, the software
performance is one of the main points of interest. Software items are continually improving[2]:
new highlights are added, UI changes, and so forth Software performance is a significant angle
in building up any software item. Performance: capacity to deliver a specific number of items.
All in all, it is a capacity to deliver a specific measure of item. To keep up the software extension
measure, numerous compelling quality frameworks are created; which address an association's
business requirements. Architects utilize different kinds of framework development measure
model to coordinate the undertaking's life cycle. Different exercises might be done in different
stages by a particular or team doing software development measure. Exemplary exercises acted
in software development measure incorporates: System arranging, System requirements and
advantages investigation, Project underwriting and project checking, System plan,
Development, Software reconciliation and testing, System coordination and testing and
documentation, Implementation and Maintenance[3]. The significant issue in software
development is to control, how to instrument, utilizing certain abilities and inside specific
limits. Software development lifecycle (SDLC) gives a short standpoint of how the unique
critical thinking occasions might be done in different parts by a discrete or team doing software
advance. The different SDLCs models are Waterfall, Iterative, Iterative and Incremental,
Evolutionary Prototyping, Ad-hoc or Code-And-Fix SDLC.

Figure 1 Software Development Life Cycle

Numerous agile thoughts have been around since 70's or smooth previously and their substance
is reported as a reaction against different traditional strategies. Agile strategies on a whole are
new; they have solid roots throughout the entire existence of software engineering. The term
agile can be characterized by quickness, correctness, and ease of quantity and it has likewise
increased the public thought in late 1990's, agile methodologies were very much perceived to
advance frameworks all the more rapidly with fractional time spent on examination and design.
The quality of the software for the most part relies upon the software development life cycle
(SDLC). The SDLC is a course utilized by software development industry to design, develop,
and test high-quality software. The point of SDLC includes creating high-quality software that

1692 | Vol. 17 Issue-10, 2022

DOI: 10.5281/zenodo.7157445

meets or surpasses client assumptions, arrives at fruition inside time, and cost assessment, and
is straightforwardly identified with the client just as hierarchical fulfilment. It is a need for each
association to adopt a minimal effort software development model. On the off chance that the
minimal effort model can viably deliver high-quality software, it ought to be adopted to
appreciate long haul benefits. It is essential for each association to look for high-quality and
minimal effort software development models. Consequently, it is viewed as that a decent SDLC
catches, checks, and carries out client requirements inside the time-box and purchased.
Existing Well-Known Models
The waterfall model is the principal, generally persuasive, and most ordinarily utilized process
model. This model was suggested by Royce and remembers a linear or sequential execution of
stages for a way with the end goal that the past stage gives input to the resulting stage, and this
commonly follows the framework design corresponding to the main process model In order to
defeat the critical limits of the waterfall model, an iterative model of software development was
presented. In this methodology, requirements are gathered, and the task is developed and
conveyed to the client through emphasess. A Rational Unified Process model (RUP) was
presented with an equal working style wherein the new emphasis starts prior to delivering the
current cycle, and this is extremely[4] time powerful. A twisting model is another illustration
of the iterative model in development and from the conveyance perspective. In the twisting
model, prototyping and design components are consolidated in a phase. Four major stages are
associated with this model as follows: objective, danger, development and approval, and
arranging. An extremely mainstream SDLC model that was named as the V-Model was
developed in 1980. This model included an increased spotlight on testing to guarantee the
quality of the software, and even each period of V-Model is related with testing. Extreme
programming (XP) is the most ordinarily utilized strategy in agile procedure and includes the
advanced form of the issues experienced in long development patterns of traditional
development models. The XP method is portrayed by short development cycles, incremental
masterminding, steady input, reliance on correspondence, and a transformative layout. The
scrum procedure is an iterative and incremental process model to deliver or deal with any task.
Basically, the scrum is a term that originates from system in rugby. It doesn't need or give a
particular software development technique or practice that ought to be utilized by the scrum.
The scrum just requires certain administration practices and tools in various periods of scrum
to stay away from likely disarray because of flightiness and intricacy.
LITERATURE REVIEW
S. Velmurugan et al.[4], Quality is the main factor for software development as it
fundamentally characterizes consumer loyalty that is straightforwardly identified with the
accomplishment of a software project. The software process models is utilized to guarantee
software quality, address an assortment of assignment settings, oversee project length, improve
the process and reach to execute the process understanding, and to fitting understood guess for
all undertaking settings. A few software processes models exist in software though with
restricted degree. Given this perspective, this paper presents another software development life
cycle model, ''AZ-Model,'' for software development by presenting new exercises during

1693 | Vol. 17 Issue-10, 2022

DOI: 10.5281/zenodo.7157445

software development life cycle. It defeats the impediments of traditional models and
fundamentally impacts the creation of a quality item in a period box. This paper additionally
presents a complete similar examination and factual investigations to inspect the meaning of
AZ–Model for software development.
M. Niazi et al.,[5], In the course of the most recent decade, a ton of examination has been
coordinated toward incorporating performance investigation into the software development
process. Traditional software development strategies center around software correctness,
presenting performance gives later in the development process. This methodology doesn't
consider the way that performance issues may require extensive changes in design, for instance,
at the software engineering level or far more detestable at the prerequisite investigation level.
A few methodologies were proposed to address early software performance investigation.
Albeit some of them have been effectively applied, we are still a long way from seeing
performance examination incorporated into ordinary software development. In this paper, we
present a complete survey of late exploration in the field of model-based performance
expectation at software development time to evaluate the development of the field and point
out promising examination bearings.
BEST PRACTICES OF MACHINE LEARNING
We categorized the challenges by card sorting interview and survey free response questions,
and then used our own judgment as software engineering and AI researchers to highlight those
that are essential to the practice of AI on software teams.
A. End-to-end pipeline support
As machine learning components have become more mature and integrated into larger software
systems, our participants recognized the importance of integrating ML development support
into the traditional software development infrastructure. They noted that having a seamless
development experience covering (possibly) all the different stages described in Figure 1 was
important to automation. However, achieving this level of integration can be challenging
because of the different characteristics of ML[6] modules compared with traditional software
components. For example, previous work in this field found that variation in the inherent
uncertainty (and error) of data-driven learning algorithms and complex component
entanglement caused by hidden feedback loops could impose substantial changes (even in
specific stages) which were previously well understood in software engineering (e.g.,
specification, testing, debugging, to name a few). Nevertheless, due to the experimental and
even more iterative nature of ML development[7], unifying and automating the day to-day
workflow of software engineers reduces overhead and facilitate progress in the field.
B. Data availability, collection, cleaning, and management
Since many machine learning techniques are centered on learning from large datasets, the
success of ML-centric projects often heavily depends on data availability, quality and
management. Labeling datasets is costly and time-consuming, so it is important to make them
available for use within the company (subject to compliance constraints). Our respondents
confirm that it is important to “reuse the data as much as possible to reduce duplicated effort.”
In addition to availability, our respondents[8] focus most heavily on supporting the following

1694 | Vol. 17 Issue-10, 2022

DOI: 10.5281/zenodo.7157445

data attributes: “accessibility, accuracy, authoritativeness, freshness, latency, structuredness,
ontological typing, connectedness, and semantic joinability.” Automation is a vital cross-
cutting concern, enabling teams to more efficiently aggregate data, extract features, and
synthesize labelled examples. The increased efficiency enables teams to “speed up
experimentation and work with live data while they experiment with new models.”
C. Education and Training
The integration of machine learning continues to become more ubiquitous in customer-facing
products, for example, machine learning components are now widely used in productivity
software (e.g., email, word processing) and embedded devices (i.e., edge computing). Thus,
engineers with traditional software engineering backgrounds need to learn how to work
alongside of the ML specialists. A variety of players within Microsoft have found it incredibly
valuable to scaffold their engineers’ education in a number of ways. First, the company hosts a
twice-yearly internal conference on machine learning and data science, with at least one day
devoted to introductions to the basics of technologies, algorithms, and best practices. In
addition, employees give talks about internal tools and the engineering details behind novel
projects and product features, and researchers present cutting-edge advances they have seen
and contributed to academic conferences. Second, a number of Microsoft teams host weekly
open forums on machine learning and deep learning[9], enabling practitioners to get together
and learn more about AI. Finally, mailing lists and online forums with thousands of participants
enable anyone to ask and answer technical and pragmatic questions about AI and machine
learning, as well as frequently share recent results from academic conferences.
D. Model Debugging and Interpretability
Debugging activities for components that learn from data not only focus on programming bugs,
but also focus on inherent issues that arise from model errors and uncertainty. Understanding
when and how models fail to make accurate predictions is an active research area, which is
attracting more attention as ML algorithms and optimization techniques become more complex.
Several survey respondents and the larger Explainable AI community propose to use more
interpretable models, or to develop visualization techniques that make black-box models more
interpretable. For larger, multi-model systems[10], respondents apply modularization in
conventional, layered, and tiered software architecture to simplify error analysis and
debuggability.
E. Model Evolution, Evaluation, and Deployment
ML-centric software goes through frequent revisions initiated by model changes, parameter
tuning, and data updates, the combination of which has a significant impact on system
performance. A number of teams have found it important to employ rigorous and agile
techniques to evaluate their experiments. They developed systematic processes by adopting
combo-flighting techniques (i.e., flighting a combination of changes and updates), including
multiple metrics in their experiment score cards, and performing human-driven evaluation for
more sensitive data categories. One respondent’s team uses “score cards for the evaluation of
flights and storing flight information: How long has it been flighted, metrics for the flight, etc.”
Automating tests is as important in machine learning as it is in software engineering; teams

1695 | Vol. 17 Issue-10, 2022

DOI: 10.5281/zenodo.7157445

create carefully put-together test sets that capture what their models should do. However, it is
important that a human remains in the loop. One respondent said, “we spot check and have a
human look at the errors to see why this particular category is not doing well, and then
hypothesize to figure out problem source.” Fast-paced model iterations require more frequent
deployment. To ensure that system deployment goes smoothly, several engineers recommend
not only to automate the training and deployment pipeline, but also to integrate model building
with the rest of the software, use common versioning repositories for both ML and non-ML
codebases, and tightly couple the ML and non-ML development sprints and stand-ups.
F. Compliance
Microsoft issued a set of principles around uses of AI[10] in the open world. These include
fairness, accountability, transparency, and ethics. All teams at Microsoft have been asked to
align their engineering practices and the behaviors of fielded software and services in
accordance with these principles. Respect for them is a high priority in software engineering
and AI and ML processes and practices. A discussion of these concerns is beyond the scope of
this paper.
G. Varied Perceptions
We found that as a number of product teams at Microsoft integrated machine learning
components into their applications, their ability to do so effectively was mediated by the amount
of prior experience with machine learning and data science. Some teams fielded data scientists
and researchers with decades of experience, while others had to grow quickly, picking up their
own experience and more-experienced team members on the way. Due to this heterogeneity,
we expected that our survey respondents’ perceptions of the challenges their teams’ faced in
practicing machine learning would vary accordingly. Two things are worth noticing. First,
across the board, Data Availability[11], Collection, Cleaning, and Management, is ranked as
the top challenge by many respondents, no matter their experience level. We find similarly
consistent ranking for issues around the categories of end-to-end pipeline support and
collaboration and working culture. Second, some of the challenges rise or fall in importance as
the respondents’ experience with AI differs. For example, education and training is far more
important to those with low experience levels in AI than those with more experience. In
addition, respondents with low experience rank challenges with integrating AI into larger
systems higher than those with medium or high experience. This means that as individuals (and
their teams) gain experience building applications and platforms that integrate ML, their
increasing skills help shrink the importance of some of the challenges they perceive. Challenges
around tooling, scale[12], and model evolution, evaluation, and deployment are more important
for engineers with a lot of experience with AI. This is very likely because these more
experienced individuals are tasked with the more essentially difficult engineering tasks on their
team; those with low experience are probably tasked to easier problems until they build up their
experience.
EXPERIMENTAL METHODS
Software requirements are characterized during the beginning phases of a software
development as a detail of what ought to be carried out. They are portrayals of how the

1696 | Vol. 17 Issue-10, 2022

DOI: 10.5281/zenodo.7157445

framework ought to carry on, or of a framework property or quality. IEEE characterizes
prerequisite investigation is a process of examining client needs to show up at a meaning of
framework, equipment, or software requirements. Requirements investigation is important to
the achievement of a frameworks or software project. The requirements ought to be archived,
significant, quantifiable, testable, recognizable, identified with distinguished business needs
and characterized to a degree of detail adequate for framework design. Software requirements
incorporate business requirements, client requirements, framework requirements, outer
interface prerequisite, useful requirements, and non-useful requirements[13]. In prerequisite
articulations each individual business, client, practical, and non-useful necessity would show
the characteristics. Attributes of prerequisite explanations are finished, correct, attainable,
important, prioritized, unambiguous, and undeniable. Be that as it may, it's insufficient to have
superb individual necessity explanations. So requirements assortments are utilized to gather a
bunch of prerequisite or gathering of necessity.

Figure 2 Software performance Testing

Requirements should state what to do and the design ought to portray how it does this.
Attributes of requirements are finished, steady, modifiable, and detectable which mirror the
software quality. Quality is vigorously reliant on useful or non-practical requirements. In this
segment we have dissected the different boundaries of necessity for example consistency,
fulfilment or correctness and modifiable. Consistency implies giving unsurprising, viable and
solid outcomes to the client. Consistency alludes to circumstances[14] where a particular
contains no inside contradictions, while fulfilment alludes to circumstances where a detail
involves all that is known to be "valid" in a specific setting. It contains all important information
to stay away from uncertainty and need no intensification to empower appropriate execution
and check. Correctness is generally intended to be the mix of consistency and fulfilment.
Correctness is often more logically characterized as fulfilment of certain business objectives.
Modifiable alludes to every prerequisite be extraordinarily named and communicated
independently from others so you can allude to it unambiguously. In the event that its
construction and style are changes to the necessity can be made effectively, totally and reliably.

1697 | Vol. 17 Issue-10, 2022

DOI: 10.5281/zenodo.7157445

Using Machine Learning Algorithms for Software Development Performance
Machine learning manages the issue of how to construct PC programs that improve their
performance at some assignment through experience. Machine learning algorithms have been
used in data mining problems where enormous databases may contain significant certain
consistencies that can be found consequently; poorly comprehended spaces where people
probably won't have the information expected to develop successful algorithms; and areas
where projects should powerfully adapt to evolving conditions. Learning an objective capacity
from preparing data includes numerous issues (work portrayal, how and when to produce the
capacity, with what given info, how to assess the performance of created work, and so forth).
Major sorts of learning include: concept learning, decision trees, artificial neural networks,
Bayesian belief networks, reinforcement learning, genetic algorithms and genetic
programming, instance-based learning, inductive logic programming, and analytical learning.
Table 1 sums up the primary properties of various sorts of learning. Decision Tree is a
Supervised Machine Learning way to deal with tackle characterization and relapse problems
by constantly parting data based on a specific boundary. The decisions are in the leaves and the
data is part in the hubs. In Classification Tree[15] the decision variable is categorical (result as
Yes/No) and in Regression tree the decision variable is ceaseless. Decision Tree has the
accompanying advantages: it is appropriate for relapse just as arrangement issue, ease in
translation, ease of handling categorical and quantitative qualities, fit for filling missing
qualities in credits with the most plausible worth, high performance because of productivity of
tree crossing algorithm. Decision Tree may experience the issue of over-fitting for which
Random Forest is the arrangement which is based on gathering modeling approach.
Algorithm

There are three ways to increase software performance:

 Using additional programs to increase software performance;

1698 | Vol. 17 Issue-10, 2022

DOI: 10.5281/zenodo.7157445

  Using software capabilities to increase its performance;

 Increasing programmers' performance to increase software performance.
Software requirements are characterized during the beginning phases of a software
development as a detail of what ought to be carried out. They are depictions of how the
framework ought to carry on, or of a framework property or trait. IEEE characterizes
prerequisite investigation is a process of considering client needs to show up at a meaning of
framework, equipment, or software requirements. Requirements examination is important to
the accomplishment of a frameworks or software project. The requirements ought to be
archived, noteworthy, quantifiable, testable, recognizable, identified with distinguished
business needs and characterized to a degree of detail adequate for framework design. Software
requirements incorporate business requirements, client requirements, framework requirements,
outer interface necessity, utilitarian requirements, and non-practical requirements. In
prerequisite articulations each individual business, client, useful, and non-utilitarian necessity
would display the characteristics. Qualities of prerequisite explanations are finished, correct,
doable, essential, prioritized, unambiguous, and undeniable. Be that as it may, it's insufficient
to have phenomenal individual prerequisite explanations. So requirements assortments are
utilized to gather a bunch of prerequisite or gathering of necessity. Requirements should state
what to do and the design ought to depict how it does this. Attributes of requirements are
finished, predictable, modifiable, and recognizable which mirror the software quality. Quality
is vigorously subject to utilitarian or non-useful requirements. In this part we have examined
the different boundaries of prerequisite for example consistency, culmination or correctness
and modifiable. Consistency implies giving unsurprising, viable and dependable outcomes to
the client. Consistency alludes to circumstances where a detail contains no inside
contradictions, though fulfilment alludes to circumstances where a determination involves all
that is known to be "valid" in a specific setting. It contains all important information to maintain
a strategic distance from equivocalness and need no intensification to empower appropriate
execution and confirmation. Correctness is normally intended to be the mix of consistency and
culmination. Correctness is often more even-minded characterized as fulfilment of certain
business objectives.
Software Optimization Methods
Notwithstanding the steadily expanding viability of PCs, efficiency of human labour is rising
intentionally, which is especially pertinent to profitability of software engineers. Condition can
be improved through P-Modeling Framework, reversible semantic following and different
philosophies that streamline the process of software development stages. For starting, the
normal efficiency of labor of representatives of an organization is contrasted and the current
profitability of labor of workers of different organizations. In the event that the indicators of
the organization's performance surpass Fortune Global 500, this is an increase in performance.
Efficiency doesn't just arrangement with flow and income. Labour is the central issue here.
Labor is an outcome and advantage, as it is created by a worker. While assessing the matter of
software developer, its environment is examined. It is difficult to recognize efficiency of labor
in organization and its profitability in business-climate. The key issue facing a researcher is to

1699 | Vol. 17 Issue-10, 2022

DOI: 10.5281/zenodo.7157445

increase performance. Criteria for optimization function are as follows: 𝑦 = 𝜑(𝑥1 , 𝑥2 ,..., 𝑥𝑛)
→ 𝑚𝑖𝑛 , thus, 𝑦 - time of data processing; 𝑥1 , 𝑥2 ,..., 𝑥𝑛 - all parameters (all affecting factors),
thus, they can directly or indirectly affect performance; 𝑥𝑖 𝜖 [𝑎𝑖 , 𝑏𝑖] - assigned field of the i-
th factor.
The issue of low performance of information frameworks can be addressed by performing
various assessments and changes of processes. Expanding the performance of existing
frameworks may keep away from the acquisition of additional worker gear and save impressive
assets to the spending plan. In such manner, the followings ought to be executed: investigating
the framework; performance examination; performance review; performance engineering
equipment optimization.
CONCLUSION
Software assumes a basic part in businesses, governments, and societies. To improve
performance and quality of the software are important objectives of software engineering. A
conversation on different augmentation models has been reachable in this paper. Albeit
numerous development models exist, this paper examines various models out of those and the
correlation incorporates the advantages and disadvantages of various models which can assist
with choosing explicit model at explicit circumstances relying upon client demand and
including business requirements. It additionally portray about agile technique, its different
standards and steps. It likewise gives a correlation of agile and waterfall models, and
additionally portrays the advantages of agile over traditional system. There are numerous
restrictions and boundaries in different models. In future, our primary center is to lead a meeting
from various industrialists, research researchers and figure the outcomes for assessment
process. At present our survey identified with future work is done and we do computations
utilizing chi-square methodology and plotting a model which will upsurge the performance of
item and additionally figure cost and would be pertinent altogether sorts of software
improvement process.
REFERENCES

[1]. N. M. A. Munassar and A. Govardhan, ‘‘A comparison between five models of software
engineering,’’ Int. J. Computer. Sci. Issues, vol. 7, no. 5, pp. 95–101, 2010.

[2]. S. U. Khan, M. Niazi, and R. Ahmad, ‘‘Critical success factors for offshore software
development outsourcing vendors: An empirical study,’’ in Proc. 11th Int. Conf.
Product Focused Softw. Develop. Process Improvement (PROFES), Limerick, Ireland,
2010

[3]. S. Schneidera, R. Torkarb, and T. Gorschek, ‘‘Solutions in global software engineering:
A systematic literature review,’’ Int. J. Inf. Manag., vol. 33, no. 1, pp. 119–132, 2013.

[4]. S. Velmurugan et al., ‘‘Software development life cycle model to build software
applications with usability,’’ in Proc. Int. Conf. IEEE Adv. Computer., Commun.
Inform. (ICACCI), Sep. 2014

[5]. M. Niazi et al., ‘‘Challenges of project management in global software development: A
client-vendor analysis,’’ Inf. Softw. Technol., vol. 80, pp. 1–19, Dec. 2016.

1700 | Vol. 17 Issue-10, 2022

DOI: 10.5281/zenodo.7157445

[6]. H. Lei et al., ‘‘A statistical analysis of the effects of scrum and Kanban on software
development projects,’’ Robot. Computer.-Integr. Manuf., vol. 43, pp. 59–67, Feb.
2017.

[7]. C.-Y. Chen, P.-C. Chen, and Y.-E. Lu, ‘‘the coordination processes and dynamics
within the inter-organizational context of contract-based outsourced engineering
projects,’’ J. Eng. Technol. Manag., 2013.

[8]. P. Bedi, K. Upreti, A. S. Rajawat, R. N. Shaw and A. Ghosh, "Impact Analysis of
Industry 4.0 on Realtime Smart Production Planning and Supply Chain Management,"
2021 IEEE 4th International Conference on Computing, Power and Communication
Technologies (GUCON), 2021, pp. 1-6, doi: 10.1109/GUCON50781.2021.9573563.

[9]. A. Tariq and A. A. Khan, ‘‘Framework supporting team and project activities in global
software development (GSD),’’ in Proc. Int. Conf. Emerg. Technol. (ICET), 2012.

[10]. Bedi, P., Goyal, S.B., Rajawat, A.S., Shaw, R.N., Ghosh, A. (2022). A
Framework for Personalizing Atypical Web Search Sessions with Concept-Based User
Profiles Using Selective Machine Learning Techniques. In: Bianchini, M., Piuri, V.,
Das, S., Shaw, R.N. (eds) Advanced Computing and Intelligent Technologies. Lecture
Notes in Networks and Systems, vol 218. Springer, Singapore.
https://doi.org/10.1007/978-981-16-2164-2_23

[11]. B. Singh and S. P. Kannojia, “A model for software product quality prediction,”
Journal of Software Engineering and Applications, Vol. 5, pp. 395-401, May 2012

[12]. Kumar, R., Singh, J.P., Srivastava, G. (2014). Altered Fingerprint Identification
and Classification Using SP Detection and Fuzzy Classification. In: , et al. Proceedings
of the Second International Conference on Soft Computing for Problem Solving
(SocProS 2012), December 28-30, 2012. Advances in Intelligent Systems and
Computing, vol 236. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1602-
5_139.

[13]. B. Singh and S. Gautam, “Hybrid Spiral Model to Improve Software Quality
Using Knowledge Management,” International Journal of Performability Engineering,
Vol. 12, Issue 4, pp. 341-352, July 2016.

[14]. Gite S.N, Dharmadhikari D.D, Ram Kumar,” Educational Decision Making
Based On GIS” International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878, Volume-1, Issue-1, April 2012.

[15]. Goyal, S.B., Bedi, P., Rajawat, A.S., Shaw, R.N., Ghosh, A. (2022). Multi-

objective Fuzzy-Swarm Optimizer for Data Partitioning. In: Bianchini, M., Piuri, V.,
Das, S., Shaw, R.N. (eds) Advanced Computing and Intelligent Technologies. Lecture
Notes in Networks and Systems, vol 218. Springer, Singapore.
https://doi.org/10.1007/978-981-16-2164-2_25

[16]. S. Srivastava and R. Kumar, "Indirect method to measure software quality using
CK-OO suite," 2013 International Conference on Intelligent Systems and Signal
Processing (ISSP), 2013, pp. 47-51, doi: 10.1109/ISSP.2013.6526872.

