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Abstract 
Our research delved into the integration of Generative Adversarial Networks, XG Boost, and 
compression techniques to develop a sophisticated generative lossy compression system. The 
investigation covered various factors such as normalization layers, generator and discriminator 
architectures, training strategies, and perceptual losses. Our system produced visually appealing 
reconstructions similar to the original input, functioning effectively across a wide range of 
bitrates and even for high-resolution images. We evaluated the system's performance using 
several perceptual metrics and a user study, demonstrating our approach to be superior to 
existing methods, even at bitrates exceeding 2 x bitrate. In summary, our research successfully 
bridged the gap between rate-distortion-perception theory and practical implementation. 
1Introduction 
The usage of images is growing at a staggering pace, leading to an exponential rise in the 
storage space and bandwidth required to store and transmit them. Consequently, there has been 
considerable attention given to image compression methods that can eliminate redundant 
information and reduce data size, thereby enabling more efficient storage and transmission. The 
two primary digital image compression techniques are lossless and lossy. In lossless 
compression, the retrieved information from the compressed image is identical to the original 
information before compression. On the other hand, lossy compression produces similar but 
not identical information. However, lossy compression techniques can considerably decrease 
the size of the compressed image and fine-tune the balance between the produced data size and 
the retrieved image quality when compared to the original. As a result, several recent methods 
have emerged that compress the same image at various compression levels based on the 
significance of the available information in the image. 
 
Recent advancements in Artificial Neural Networks (ANNs), machine learning, and deep 
learning have led to significant improvements in image compression performance. These 
techniques offer greater flexibility in terms of the type of objects in the images being 
compressed. Furthermore, adding new image types to the compression process only requires 
training the discriminator to accurately identify whether the generated image matches the 
original, as these networks are not limited by hand-crafted features and can learn new ones 
through additional training. In this study, we propose a deep learning approach that leverages 
GAN and XGBoost to ensure that the compressed image retains the visual appeal of the 
original. We also employ a training method that prevents the discriminator from being fooled 



205 | Vol. 18 Issue-3, 2023 

 

 

https://seyboldreport.net/ 

by the generator, thus preserving the clarity of the compressed image. 
 
New research has shown that attention mechanisms can be a valuable addition to Generative 
Adversarial Networks (GANs) for image compression tasks [7], [8]. By breaking down the 
generative network into separate attention and transformation networks, the attention network 
can identify key areas of interest, while the transformation network converts the image from 
one domain to another. In [7] and [8], the CycleGAN framework is enhanced with additional 
attention networks to preserve the background of the input image while transforming the 
foreground. This approach has demonstrated improved performance for image compression 
with GANs. 
 
As our reliance on image grows, the demand for storage space and bandwidth to accommodate 
them is becoming increasingly unfeasible. This has prompted the need for compression 
techniques that can reduce the number of bits needed to represent an image without sacrificing 
its quality. Image compression plays a crucial role in numerous applications by significantly 
decreasing storage space and communication bandwidth requirements, making it easier to 
deploy imaging technologies at scale. 
 
This paper introduces a novel approach for compressing high-resolution images while 
preserving their visual quality. The proposed methodology is compared to existing methods, 
and the results show that the proposed approach outperforms them visually, even when the 
previous methods used higher bitrates. The study discusses various quantitative metrics to 
evaluate the approach's performance  such as KID,FID,PSNR,LPIPS,MSE and SSIM which 
demonstrate that the results align with the rate-distortion-perception theory. Although no single 
metric can precisely predict the user study's exact ranking, metrics such as FID and KID can be 
beneficial in guiding the exploration process and provide useful insights for informed decision-
making. A comprehensive perceptual evaluation requires a diverse range of metrics that cover 
different aspects, including no-reference metrics, pair-wise similarities, distributional 
similarities, and deep feature-based metrics derived from various network architectures. By 
employing this ensemble of metrics, a more robust and comprehensive evaluation of perceptual 
qualities can be achieved. The analysis thoroughly examines the suggested architecture and its 
components, such as normalization layers, generator and discriminator architectures, training 
methods, and the loss function, based on both perceptual metrics and stability to obtain a 
comprehensive understanding of their effectiveness. 
 
2 Related Work 
Deep convolutional autoencoders have demonstrated significantly better compression rates 
than existing techniques like JPEG2000 with similar complexity [13]. This has led to the use 
of neural networks in various approaches to tailor their performance for specific applications. 
Ayoobkhan et al. [7] proposed a hybrid compression method that uses near-lossless 
compression for the ROI and lossy compression for the remaining parts of the image. Their 
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method utilizes Graph-Based Segmentation (GBS) [17] to extract the ROI, and a Feed-Forward 
Neural Network (FF-NN) is trained on the GBS segments to compress image data. The FF-NN 
provides near-lossless predictions of pixel values based on their neighbouring pixels' values. 
The method optimizes edge weight values using two optimization algorithms: Particle Swarm 
(PS) and Gravitational Search (GS) optimizers. Although this method performs well compared 
to previous methods, a Convolutional Neural Network (CNN) can achieve better results by 
utilizing three-dimensional filters that consider pixel position in addition to their values, 
providing superior performance over FF-NN when interacting with images. 
 
In the beginning, RNNs were utilized in the initial works [45, 47], whereas subsequent works 
were based on auto-encoders [5, 44, 1]. To achieve a reduced bitrate, various approaches have 
been employed to enhance the modelling of the probability density of auto-encoder latents, 
which, in turn, leads to more efficient arithmetic coding. These methods include hierarchical 
priors, auto-regression with different context shapes, or a combination of both [6, 31, 28, 39, 
32, 26, 33]. State-of-the-art models, such as the one proposed by Minnen et al. [32], now surpass 
BPG in terms of PSNR. 
 
A novel spatial attention GAN model introduced by Hajar Emami et al. [59], have facilitated 
significant advancements in the field of image-to-image translation.The discriminator in SPA 
GAN computes attention and leverages it to guide the generator to focus on the most important 
regions that distinguish between the source and target domains. The attention is represented by 
spatial maps, which highlight the areas that the discriminator considers significant in 
determining whether an input image is real or fake. These spatial attention maps are then fed 
back to the generator, resulting in higher emphasis on the discriminative regions when 
computing the generator loss, thereby producing more realistic output images. 
 
CNNs have been successfully applied to compression tasks using autoencoders, which typically 
comprise encoding, bottleneck, and decoding layers. The encoding layers down sample the 
input until the bottleneck layer, the smallest in the network, is reached. The decoding layers 
then restore the input size until the output layer. During training, the network minimizes the 
difference between the output and input images, aiming to reconstruct the original image from 
the bottleneck layer. After training, the encoding network generates the compressed image, 
which can be used with the decoding network to retrieve the original. CNNs also excel at 
segmenting images by predicting pixel segmentation. Among the most effective networks for 
medical image segmentation is the U-net, which has shown excellent performance [12]. 
 
3 Method 
3.1 Background 
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Conditional GANs: 
Conditional GANs are a type of generative adversarial network where the generator is 
conditioned on additional information, such as labels or input images. The additional 
information is usually fed into the generator and discriminator networks as extra inputs. The 
aim of the network is to learn a mapping between the additional information and the generated 
images, while the discriminator tries to distinguish between real and fake images. The generator 
tries to generate images that are realistic and similar to the target distribution while satisfying 
the conditions specified in the additional information. These networks have found various 
applications, such as image-to-image translation, super-resolution, and text-to-image synthesis. 
 
Conditional Generative Adversarial Networks (GANs) are a machine learning method that 
enables the learning of a generative model of a conditional distribution p(X|S), where S 
represents additional information or context associated with a given data point X, such as class 
labels or semantic maps. The joint distribution p (X,S) is often unknown, and Conditional 
GANs help in estimating it. The method has been widely used in various applications to 
generate images and other data that are conditioned on specific contexts. In Conditional GANs, 
two networks, a generator G and a discriminator D, are trained to learn a generative model of a 
conditional distribution p (X|S). The generator G, dependent on the information s, transforms 
samples y from a fixed known distribution pY into p(X|S). The discriminator D receives (x, s) 
input and evaluates the probability of it being a sample from p (X|S) rather than from G's output. 
The goal is to train the generator G to generate samples that can deceive the discriminator D 
into classifying them as real data coming from the distribution p(X|S). To achieve this, a "non-
saturating" loss can be optimized while keeping s constant during the process [17,58,59].        
                               
                       VDG = E X~Pdata(x) [log D (X)] + EZ – Pdata (z) [ log (1- D (G (Z))]                (1) 
 
G- generator, X- sample from real data, Z- sample from generator, D- Discriminator, Pdata(x)- 

distribution of real data, Pdata (z)- distribution of generator data, D(x) – Discriminator network 
and G(x)- generator network 
 
XGBoost: 
XGBoost is a popular machine learning algorithm that has been widely used for regression and 
classification tasks. It is an implementation of gradient boosted decision trees that is designed 
to be efficient, scalable, and flexible. The algorithm has several advantages over other machine 
learning methods, such as faster execution times, better accuracy, and the ability to handle large 
datasets. 

In XGBoost, the objective is to minimize a loss function that measures the difference between 
the predicted and actual values. The loss function is defined as the sum of two terms: the first 
term is the training loss, which measures the difference between the predicted and actual values 
for each training example, and the second term is the regularization term, which helps to prevent 
overfitting. 
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The algorithm builds a model by iteratively adding decision trees to the ensemble, with each 
subsequent tree trying to correct the errors of the previous tree. The trees are constructed in a 
greedy manner, using a split finding algorithm that maximizes the reduction in the loss function 
at each step. 

The XGBoost algorithm also includes several techniques to improve its performance and reduce 
overfitting, such as pruning, regularization, and early stopping. Pruning involves removing 
branches from the tree that do not contribute to improving the overall performance, while 
regularization adds penalties to the loss function to discourage overfitting. Early stopping is 
used to stop the training process if the performance of the model does not improve after a certain 
number of iterations. 

Mathematically, the objective function for XGBoost can be written as: 

Obj = L + Ω                                                                                                      (2) 

where L is the training loss function and Ω is the regularization term. The training loss function 
can be written as: 

L = ∑(yi - ŷi)²                                                                                                   (3) 

where yi is the true label of the i-th example and ŷi is the predicted label. The regularization 
term can be written as: 

Ω = γT + ½λ∑wi²                                                                                             (4) 

where T is the number of leaves in the tree, γ is the complexity parameter that controls the size 
of the tree, λ is the regularization parameter that controls the amount of regularization, and wi 
is the weight assigned to the i-th feature. 

Neural Image Compression 
Neural image compression is a technique that uses deep learning models to reduce the size of 
digital images while maintaining their visual quality. The approach involves training an 
encoder-decoder network, also known as an autoencoder, to compress and decompress the 
images. The encoder converts the high-dimensional image data into a lower-dimensional 
representation, while the decoder generates a compressed version of the image from this 
representation. The goal is to minimize the distortion between the original and the compressed 
image while constraining the compression rate. This can be achieved by adding a rate-distortion 
trade-off term to the loss function that balances the level of compression with the amount of 
distortion allowed in the compressed image. Neural image compression has many practical 
applications, including reducing the storage and transmission requirements of large image 
datasets without sacrificing image quality. 
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Shannon's rate-distortion theory is the foundation for the concept of learned lossy compression, 
which involves balancing the amount of information (rate) with the acceptable level of 
distortion during compression. The common approach to this problem is through an auto-
encoder architecture comprising two components: an encoder (E) and a decoder (G). In learned 
lossy compression, the auto-encoder quantizes an image x into a latent representation y = E(x) 
and uses the decoder G to reconstruct the image x' from y. The distortion incurred during lossy 
compression is measured using metrics like mean squared error (MSE). To store the quantized 
latent y, a probability model P is introduced, and an entropy coding algorithm such as arithmetic 
coding is used to store y losslessly. The bitrate required to store y can be calculated as r(y) = -
log(P(y)), with the entropy coder incurring some overhead bits. By parameterizing E, G, and P 
as convolutional neural networks (CNNs), they can be simultaneously trained to optimize the 
trade-off between rate and distortion, with a parameter ζ controlling the balance. Shannon's 
rate-distortion theory [14, 58] serves as the basis for learned lossy compression.    
                   
                      VEG = EX~Px [ζ r(y) + d ( x, x’)]                                                      (5) 
 
3.2 Formulation and Optimization 
To achieve neural image compression, we combine a conditional GAN with a learned lossy 
compression approach. This involves using an auto-encoder with an encoder E and a decoder 
G to quantize an image x into a latent representation y, and then storing y in a lossless manner, 
the XGBoost classifier helps to predict the neighbour in the creation of the sample copy by the 
generator. We train E and G, along with a discriminator D and a generator K, to minimize a 
trade-off between the compression rate and the distortion of the reconstructed image, as 
measured by a combined loss term d that includes both mean squared error and a perceptual 
distortion metric called LPIPS. By tuning hyperparameters, including ζ, ح, kM, and kP, we can 
optimize the trade-off and achieve superior compression results. 
 
        L EGK = E x~px [ ζ r(y) + d (x,x’) – حlog D (x’,y)]                                           (6) 
 

 
 
In Figure 1, we present our architecture, where ConvC denotes a convolution operation with C 
channels using 3x3 filters, unless otherwise specified. Strided down or up convolutions are 
denoted by ↓2 and ↑2, respectively. For normalization, we use ChannelNorm as described in 
the text. The activation function we use is the leaky ReLU with α=0.2, as defined in previous 
studies [56,58]. We employ nearest neighbor interpolation with a factor of 16, denoted as 
NN↑16, for upsampling. Lastly, we use Q quantization as described in [58]. 
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Constrained Rate 
When training a neural compression model using the loss function mentioned in Equation 5, 
regulating the ultimate bitrate is typically done by manipulating ζ. However, our context 
involves multiple conflicting terms (MSE, dP, and -log(D(x'))) with the rate term, making it 
challenging to compare models with varying hyperparameters kM, kP, and ح when ζ is kept 
constant. To address this issue, we introduce a "rate target" hyperparameter (rt) and modify 
Equation 3 by replacing ζ with an adaptive term, ζ'. The value of ζ' depends on two additional 
hyperparameters, ζ(a) and ζ(b), and is set to ζ(a) if r(y) is greater than rt and ζ(b) otherwise. By 
setting ζ(a) much greater than ζ(b), we can train models with an average bitrate close to rt. This 
approach helps to ensure that models are optimized for a specific bitrate target while still 
considering multiple conflicting terms. 
3.3 Architecture 
Figure 1 depicts our architecture, comprising of the encoder E, generator G, discriminator D 
and XGBoost classifier block. We adopt the straight-through estimator, as in [44,58], for 
rounding y before inputting it into G. While our E, G, and D are based on [51,58,3], we 
introduce several distinctive modifications in the discriminator and normalization layers, which 
will be described in detail in the upcoming sections. While both [51,58, 3] utilize a multi-scale 
patch-discriminator D, we implement a single-scale patch-discriminator D and replace 
InstanceNorm [49,58] with SpectralNorm [36,58]. In contrast to [3], we condition D on y by 
concatenating an upscaled version of it with the image, as illustrated in Figure 1 [58]. This 
approach is inspired by the use of a conditional GAN formulation associated with XGBoost, 
where D can access the conditioning information (in our case, y as described in Section 3.2). 
 
4 Experiments  
In Figure 1, we present our architecture, which consists of the encoder E, generator G, 
discriminator D, and XGBoost classifier block. To round y, we use the straight-through 
estimator, similar to [44,58]. While our E, G, and D are based on [51,58,3], we introduce some 
unique modifications in the discriminator and normalization layers, which we will describe in 
detail in later sections. Unlike [51,58,3], we employ a single-scale patch-discriminator D and 
substitute InstanceNorm [49,58] with SpectralNorm [36,58]. In addition, we condition D on y 
by concatenating an upscaled version of it with the image, as shown in Figure 1 [58]. This 
strategy is motivated by the use of a conditional GAN formulation with XGBoost, where D can 
access the conditioning information (in our case, y as described in Section 3.2). 
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Image 4 
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Image 7 
Resolution: 2040*1152 

XGBoost 
High 

XGBoost  
Medium 

XGBoost 
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1.0 MB 1.2 MB 1.1 MB 

Hi-fi-
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 Table 1.  Compressed size is showcased for Hi-fi-Gan’s+ XGBoost high, medium and low 
approach vs Hi-fi-Gan’s+KNN high, medium and low approach Vs Hi-fi-high, medium and 
low approach 
 

COMPRESSED IMAGE VISUAL CLARITY 

Hi-fi-Gan’s+ 
XGBoost High 

Hi-fi-Gan’s+ 
XGBoost  Medium 

Hi-fi-Gan’s+ 
XGBoost Low 

Image 1 
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214 | Vol. 18 Issue-3, 2023 

 

 

https://seyboldreport.net/ 

Image 3 

 

Image 4 

Image 5 

 
Image 6 

Image 7 

 

Table 2: Compressed Image visual quality is showcased for Hi-fi-Gan’s+XGBoost high, 
medium and low approach. 
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Hi-fi-Gan’s+ XGBoost Low 

Sample Image FID KID LPIPS PSNR MSE SSIM 

Image 1 78.454 5.53026 4.60286 32.413 50.30 0.87 

Image 2 140.567 9.6711 8.0748 32.144 60.30 0.86 

Image 3 101.115 7.0410 5.8695 31.228 70.12 0.86 

Image 4 56.703 4.0802 3.3870 31.766 30.74 0.80 

Image 5 61.244 4.3826 3.6408 30.438 38.13 0.88 

Image 6 150.393 10.3262 8.6240 30.391 50.12 0.83 

Image 7 106.548 7.4032 6.1732 31.895 50.10 0.88 

                                                                    (A) 
 

Hi-fi-Gan’s+ XGBoost Medium 

Sample Image FID KID LPIPS PSNR MSE SSIM 

Image 1 47.556 3.4704 2.8754 32.220 38.19 0.90 

Image 2 92.930 6.4953 5.4120 32.612 50.52 0.90 

Image 3 58.364 4.1909 3.4798 32.236 45.73 0.87 

Image 4 42.757 3.1504 2.6075 32.096 29.19 0.84 

Image 5 58.580 4.2053 3.4919 30.478 30.21 0.93 

Image 6 102.988 7.1658 5.9742 30.762 40.37 0.88 

Image 7 72.770 5.1513 4.2851 30.321 44.13 0.87 

                                                                        (B) 
 

Hi-fi-Gan’s+ XGBoost High 

Sample Image FID KID LPIPS PSNR MSE SSIM 

Image 1 33.501 2.5334 2.0901 30.71 25.16 0.91 

Image 2 57.837 4.1558 3.4504 30.05 40.12 0.91 

Image 3 38.063 2.8375 2.3451 30.81 30.19 0.94 
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Image 4 38.481 2.8654 2.3684 31.32 29.12 0.95 

Image 5 57.833 4.1555 3.4502 31.33 29.10 0.95 

Image 6 77.084 5.4389 4.5262 31.45 27.32 0.96 

Image 7 59.002 4.2334 3.5155 30.05 40.12 0.87 

(C) 
                          Table 3. A,B,C, Test result for proposed system for different images 
            
 It is evident from table 3, that Hi-fi-Gan’s+XG Boost high approach produces higher structural 
similarity index measure and lesser Mean square error when compared to Hi-fi-
Gan’s+XGBoost low and medium approach. The MSE decreases as the resolution increases 
and PSNR increases as the resolution improves. FID, or Fréchet Inception Distance, is a metric 
that is frequently used to assess the quality of computer-generated images in comparison to real 
images. This metric is based on the Fréchet distance, which measures the distance between the 
feature representations of the generated images and those of the real images, both of which are 
obtained from the Inception v3 network. When the FID score is lower, it indicates that the 
generated images are more similar to real images. FID is commonly used to evaluate the 
performance of generative models such as GANs. 
KID, or Kernel Inception Distance, is another metric used to evaluate the quality of computer-
generated images compared to real images. KID is based on the maximum mean discrepancy 
(MMD) between the feature representations of the generated and real images, both of which 
are obtained from the Inception v3 network. KID is considered to be more robust to noise than 
FID. Like FID, a lower KID score indicates that the generated images are more similar to real 
images. 
LPIPS, or Learned Perceptual Image Patch Similarity, is a metric that measures the perceptual 
similarity between two images. This metric is based on the idea that the similarity between the 
feature representations of two images can be used to quantify their perceptual similarity. The 
feature representations are obtained from a pre-trained deep neural network, and LPIPS is 
trained to be perceptually linear. It is capable of capturing both global and local perceptual 
differences between two images. LPIPS has been shown to be highly correlated with human 
perceptual judgments and is widely used in tasks such as image quality assessment and image-
to-image translation. MSE, SSIM, and PSNR are all metrics used to evaluate the quality and 
similarity of two images. MSE, which stands for Mean Squared Error, is calculated by finding 
the average of the squared differences between each pixel value of the two images. A lower 
MSE score indicates that the images are more similar to each other. SSIM, or Structural 
Similarity Index, takes into account differences in luminance, contrast, and structure between 
the two images. A higher SSIM score indicates that the images are more similar in terms of 
their structure. PSNR, or Peak Signal-to-Noise Ratio, measures the quality of an image by 
comparing it to a reference image. It calculates the ratio between the maximum possible pixel 
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value and the root-mean-square error (RMSE) between the two images. A higher PSNR value 
indicates that the image quality is better. 

Conclusion: 
In this research, we propose a novel compression technique called High-Fidelity Generative 
Image Compression Using GAN's and XGBoost. The technique has three different variations: 
Hi-fi-GAN's+XGBoost High, Hi-fi-GAN's+ XGBoost Medium, and Hi-fi-GAN's+XGBoost 
Low. The paper discusses the architecture of our proposed system, which includes an encoder 
E, generator G, discriminator D, and XGBoost classifier block. Our approach has better 
performance and compression size, and the compressed image is clearer compared to two 
approaches (i) that solely uses GAN, called "High-Fidelity Generative Image Compression," in 
three variations: Hi-fi-low, Hi-fi-medium, and Hi-fi-high & (ii) High-Fidelity Generative 
Image Compression Using GAN's and KNN- high, medium and low approach. In our technique, 
GAN works on two parameters: x and s. x represents data point or picture location, and s 
represents extra information from absolute location about features. We fixed x as 7*7 (49 
pixels) to avoid multiple sizes of samples generated by the generator G. This approach reduces 
the permutation and increases accuracy by training only one single location of the sample, 7*7 
(49 pixel), instead of the whole image. We fixed Y, which represents the total number of 
samples, as 120, 240, 480, and 960, to avoid non-saturating loss. We employed rectified linear 
unit and Leaky ReLU in the discriminator part to improve accuracy. Our proposed architecture 
outperforms the High-Fidelity Generative Image Compression technique with Gan’s network 
and High-Fidelity Generative Image Compression technique with Gan’s and KNN approach. 
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