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Abstract 
Cyber-physical systems (CPS) are becoming increasingly prevalent in modern society, from 
autonomous vehicles to smart homes and industrial control systems. With the proliferation of 
these systems, the need for robust intrusion detection methods is more pressing than ever 
before. Anomaly-based intrusion detection using deep recurrent neural networks (RNNs) has 
emerged as a promising approach for detecting cyber attacks in CPS applications. In this paper, 
we present a survey of the current state-of-the-art in anomaly-based intrusion detection using 
deep RNNs for CPS applications. We review the key challenges associated with applying deep 
RNNs to CPS data and discuss the various techniques that have been developed to overcome 
these challenges. We also provide a comprehensive overview of the datasets and evaluation 
metrics commonly used to benchmark intrusion detection methods in CPS. Our survey 
highlights the potential of deep RNNs for detecting cyber attacks in CPS applications, 
particularly for detecting subtle changes in system behavior that may occur over an extended 
period of time. We also identify several research gaps that need to be addressed to further 
advance the use of deep RNNs for intrusion detection in CPS, including the development of 
more realistic datasets and the need for more explainable intrusion detection methods. Overall, 
our survey provides valuable insights into the current state-of-the-art in anomaly-based 
intrusion detection using deep RNNs for CPS applications and highlights several areas for 
future research. 
Keywords: Cyber Physical Systems, Intrusion detection, Deep Recurrent Neural Network, 
Cyber attacks, Machine Learning 

1. Introduction  

Cyber-physical systems (CPS) are an emerging class of systems that integrate physical 
processes with computational and communication capabilities. CPS have a wide range of 
applications, including transportation systems, industrial automation, and smart cities. As the 
number of CPS applications continues to grow, so does the need for effective intrusion 
detection methods to protect these systems from cyber-attacks. Anomaly-based intrusion 
detection is a common approach used to detect cyber-attacks in CPS. This approach involves 
training a machine learning model to learn the normal behavior of a system and then detecting 
any deviations from this behavior. Deep recurrent neural networks (RNNs) have emerged as a 
promising approach for anomaly-based intrusion detection in CPS. Deep RNNs have the ability 
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to capture long-term dependencies in time-series data, making them particularly suitable for 
detecting subtle changes in system behavior. There are several types of anomalies that can occur 
in CPS applications, including cyber-attacks, equipment malfunctions, and environmental 
changes. Cyber-attacks can be particularly difficult to detect as they often involve subtle 
changes in system behavior that may go unnoticed by traditional intrusion detection methods. 
Anomaly-based intrusion detection using deep RNNs provides a way to detect these subtle 
changes and prevent cyber-attacks before they can cause significant damage. The application 
of deep RNNs for anomaly-based intrusion detection in CPS is an active area of research. 
Researchers are developing new techniques to overcome the challenges associated with 
applying deep RNNs to CPS data, such as the need for large amounts of labeled data and the 
difficulty in interpreting the decisions made by the model. As the field continues to evolve, it 
is expected that deep RNNs will become an increasingly important tool for detecting cyber-
attacks in CPS applications 
 

 
 

       Fig 1. Architecture of Cyber Physical 
Systems 

          Fig 2. Applications of Cyber Physical Systems  

1.1 Application of Cyber Physical Systems: 
Cyber-Physical Systems (CPS) is a type of interconnected systems that bridge the gap between 
the physical and digital world by integrating sensing, computation, communication, and control 
technologies. CPS finds application in a wide range of domains, such as transportation, 
healthcare, manufacturing, smart cities, energy, and agriculture, to name a few. These systems 
have the potential to revolutionize the way we live, work, and interact with the world around 
us, by enabling intelligent decision-making, real-time monitoring and control, and autonomous 
operation. 
Smart Cities: CPS technology can be used to create smart cities that optimize urban services 
such as traffic management, energy usage, and public safety. For example, traffic lights can be 
equipped with sensors and connected to a network to optimize traffic flow, reducing congestion 
and improving safety. Similarly, energy usage can be monitored and managed in real-time, 
reducing waste and saving costs. Public safety can also be improved by integrating sensors and 
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cameras into the city's infrastructure to detect and respond to emergencies quickly. 
Industrial Automation: CPS technology is used to optimize manufacturing processes and 
reduce the need for human intervention. For example, robots can be programmed to perform 
repetitive tasks in manufacturing plants, freeing up human workers to focus on more complex 
tasks. CPS systems can also be used to monitor machinery and predict maintenance needs, 
reducing downtime and improving productivity. 
 
Healthcare: CPS technology can be used to monitor patients and deliver personalized 
healthcare, improving outcomes and reducing costs. For example, wearable devices can 
monitor vital signs and alert healthcare providers to potential issues before they become serious. 
CPS systems can also be used to track medication usage and remind patients to take their 
medication, reducing the risk of medication errors. 
Transportation: CPS technology can be used to optimize transportation networks, improving 
safety and efficiency. For example, self-driving cars can be equipped with sensors and 
connected to a network to optimize traffic flow and avoid accidents. Similarly, public 
transportation systems can be optimized using real-time data on passenger demand and traffic 
patterns. 
Agriculture: CPS technology can be used to monitor soil moisture, crop growth, and weather 
conditions, improving yields and reducing water usage. For example, sensors can be placed in 
the soil to monitor moisture levels, allowing farmers to optimize irrigation schedules. Similarly, 
CPS systems can be used to monitor weather conditions and predict crop growth, helping 
farmers make informed decisions about when to plant and harvest their crops. 
Energy: CPS technology can be used to optimize energy production and distribution, 
improving efficiency and reducing emissions. For example, wind turbines and solar panels can 
be equipped with sensors to optimize energy production based on weather conditions. Similarly, 
smart grids can be used to monitor energy usage and balance supply and demand in real-time, 
reducing waste and saving costs. 
Aerospace: CPS technology is used to control and monitor aircraft and spacecraft, improving 
safety and performance. For example, sensors can be used to monitor engine performance and 
detect potential issues before they become serious. Similarly, CPS systems can be used to 
optimize flight paths and avoid turbulence, improving passenger comfort and safety. 
Defense: CPS technology is used to control and monitor military equipment, improving 
effectiveness and reducing risk. For example, sensors can be used to monitor battlefield 
conditions and coordinate troop movements. Similarly, CPS systems can be used to control 
unmanned aerial vehicles (UAVs) and other autonomous systems, reducing the risk to human 
operators. 

2. Intrusion Detection in CPS: 

Intrusion detection is an important aspect of securing cyber-physical systems (CPS) against 
unauthorized access and attacks. Intrusion detection involves monitoring a system for 
suspicious activity or behavior, and taking appropriate action to prevent or mitigate any 
potential threats. 



3505 | Vol. 17 Issue-12, 2022 

 

 

https://seyboldreport.net/ 

There are several approaches to intrusion detection in CPS, including: 
 Signature-based detection: This approach involves comparing observed network traffic 

or system behavior against known attack signatures or patterns. If a match is detected, 
the system can take action to block or mitigate the attack. 

 Anomaly-based detection: This approach involves monitoring system behavior for 
deviations from normal patterns, and alerting system administrators or taking other 
actions when such deviations are detected. Anomaly-based detection can be particularly 
useful in detecting previously unknown or novel attacks. 

 Hybrid detection: This approach combines both signature-based and anomaly-based 
detection techniques to improve the accuracy and effectiveness of intrusion detection. 

In addition to these approaches, it is also important to implement appropriate security measures 
to prevent attacks from occurring in the first place. This may include implementing strong 
access controls, using encryption to protect sensitive data, and regularly updating and patching 
system software to address known vulnerabilities. It is also important to regularly monitor and 
audit CPS for potential security threats, and to have a well-defined incident response plan in 
place to respond to any potential attacks or breaches. Overall a comprehensive approach to 
cyber security in CPS should include a combination of intrusion detection, prevention, and 
response measures, along with a strong focus on designing and implementing secure systems 
from the outset. 

2.1 Attacks on Cyber Physical Systems 

Despite their numerous benefits, Cyber-Physical Systems (CPS) are also vulnerable to various 
types of attacks that can compromise their security, safety, and reliability. Attackers can exploit 
vulnerabilities in the system's software, hardware, and communication infrastructure to launch 
cyber-attacks  that can disrupt, modify, or steal data, or even cause physical harm to the system 
or its users. Some common types of CPS attacks include malware injection, denial-of-service 
attacks, spoofing, tampering, and eavesdropping, among others Protecting CPS against these 
attacks requires a combination of technical, organizational, and policy measures, such as secure 
design and development practices, robust authentication and access control mechanisms, real-
time monitoring and detection, and incident response and recovery planning. Here are some of 
common attacks. 
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 Fig 3 Attacks on Cyber Physical Systems 

Sensor spoofing: 
Sensor spoofing is a type of cyber attack that involves the manipulation of sensor data, making 
the system believe that the data being received is accurate, even though it is not. In CPS, sensors 
are critical components that provide real-time data about the physical environment and enable 
the system to make decisions and take actions accordingly. By spoofing the sensor data, an 
attacker can manipulate the system's decision-making process, causing it to behave 
unpredictably or even causing it to malfunction.  
Denial-of-Service (DoS): 
In a DoS attack, an attacker floods the system with traffic or requests, overwhelming it and 
preventing it from functioning correctly. In CPS, a DoS attack can cause the system to become 
unresponsive or even shut down entirely, potentially causing physical harm or damage. For 
example, an attacker could launch a DoS attack on a traffic management system, preventing it 
from controlling traffic flow and causing accidents. 
Eavesdropping: 
It is a type of cyber attack in which an attacker intercepts and reads sensitive data being 
transmitted between two entities. In CPS, this could involve intercepting sensor data or 
commands being sent between the system's components. By doing so, the attacker can gain 
access to sensitive information and potentially manipulate the system's behavior or compromise 
its security. 
Packet modification: 
It is another type of cyber attack in which an attacker alters the data being transmitted between 
two entities. In CPS, this could involve modifying the commands being sent to a control system 
or altering the sensor data being received. By doing so, the attacker can manipulate the system's 
behavior or cause it to malfunction, potentially causing physical harm or damage. 
Man-in-the-middle (MitM) : 
These attacks are a type of cyber attack in which an attacker intercepts communication between 
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two entities and relays messages between them, allowing the attacker to eavesdrop, modify, or 
manipulate the messages being exchanged. In CPS, a MitM attack could involve intercepting 
communication between sensors and a control system or between two control systems, allowing 
the attacker to manipulate the data being exchanged and potentially cause the system to 
malfunction. 
Resource blocking: 
It is a type of cyber attack in which an attacker denies access to critical resources, preventing 
the system from functioning correctly. In CPS, this could involve denying access to the system's 
control interface or blocking communication between the system's components. By doing so, 
the attacker can cause the system to become unresponsive or even shut down entirely, 
potentially causing physical harm or damage.  
Storage modification: 
Storage modification attacks involve changing or altering the contents of the system's storage 
devices, including hard drives, flash drives, and other types of memory storage. This can be 
done through various means, such as physically tampering with the storage devices or using 
malware to modify the data stored on them. 
Data remanence:  
These attacks, on the other hand, involve accessing data that has been deleted or erased from a 
storage device. This can be achieved through various methods, such as using specialized 
software to recover deleted files or analyzing magnetic patterns on hard disk drives. These types 
of attacks can be particularly devastating to cyber-physical systems, which rely heavily on the 
integrity and confidentiality of stored data. For example, if an attacker were to modify data on 
a storage device used by a medical device, such as an insulin pump, it could potentially cause 
harm to the patient using the device. Similarly, if an attacker were to access sensitive data that 
had been deleted from a control system used in a critical infrastructure facility, such as a power 
plant, it could potentially lead to a major disruption or outage. 
Information leakage: 
 It refers to the unauthorized disclosure of sensitive or confidential information from a CPS. 
This can occur when an attacker gains access to the system and is able to extract data, or when 
data is transmitted insecurely and intercepted by an attacker. Information leakage can be 
particularly dangerous in CPS that control critical infrastructure, such as power grids or 
transportation systems, as it could allow an attacker to manipulate the system or cause 
disruptions. 
Enforced computing errors: 
It occur when an attacker intentionally introduces errors or faults into a CPS. This can be done 
through various means, such as injecting malicious code into the system or disrupting 
communication channels. Enforced computing errors can cause a CPS to behave unpredictably, 
potentially leading to safety hazards or disruptions. 
Timing errors: 
It refers to errors in the synchronization or timing of events in a CPS. These errors can occur 
due to network latency or other factors, and can potentially lead to incorrect or inconsistent 
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system behavior. In some cases, attackers may intentionally introduce timing errors into a CPS 
in order to disrupt its operation or cause safety hazards.  
Authentication: 
It occurs when an attacker is able to bypass the authentication mechanisms in a CPS, allowing 
them to gain unauthorized access. This can occur due to weak passwords, vulnerabilities in the 
authentication system, or through social engineering attacks that trick users into revealing their 
login credentials. Once an attacker has gained unauthorized access, they may be able to 
manipulate or disrupt the system, potentially causing safety hazards or other types of damage. 
Deadlines miss: 
This attack occur when an attacker is able to manipulate the timing and scheduling of events in 
a CPS, causing critical tasks to miss their deadlines. This can occur through various means, 
such as introducing timing errors or disrupting communication channels. Deadline miss attacks 
can cause a CPS to behave unpredictably or fail to meet critical requirements, potentially 
leading to safety hazards or other types of damage. 
 

Table 1. Attacks on CPS its Type and Mitigation 
Layer Type of Attack Description Mitigation Strategies 

 
 

Sensing 

Sensor Spoofing 
Manipulation of sensor 
readings to provide false 
information 

Use of secure and 
redundant sensors; 
sensor data validation 

Denial-of-
Service 

Disruption of sensor data 
collection or transmission 

Use of redundancy, 
fault-tolerant 
algorithms, and backup 
data sources 

 
 
 

Communicatio
n 

Eavesdropping 

Unauthorized access to 
communication channels to 
intercept data 

Use of encryption, 
secure communication 
protocols, and access 
control mechanisms 

Packet 
Modification 

Manipulation of data packets 
during transmission 

Use of encryption, 
secure communication 
protocols, and data 
validation 

Man-in-the-
middle (MitM) 

Intercepting and manipulating 
data between two 
communication parties 

Use of secure 
communication 
protocols and strong 
authentication 
mechanisms 

 
 

Computation 

Resource 
Blocking 

Exhaustion of computing 
resources to cause a system 
crash or slowdown 

Use of load balancing 
and resource allocation 
algorithms 

Storage Unauthorized modification or Use of access control 
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Modification deletion of data stored in 
memory or storage devices 

mechanisms and data 
validation 

Control 

Data 
Remanence 

Residual data remaining in 
memory or storage devices 
after deletion or shutdown 

Use of secure data 
disposal mechanisms 
and data encryption 

Information 
Leakage 

Disclosure of sensitive 
information to unauthorized 
parties 

Use of access control 
mechanisms and 
encryption of sensitive 
data 

Enforced 
Computing 

Errors 

Manipulation of system timing 
to cause incorrect 
computations or decision-
making 

Use of redundant 
systems and error 
detection mechanisms 

 
 

Physical 

Tampering 

Physical manipulation of 
hardware or sensors to 
compromise system security 

Use of physical 
security measures and 
tamper-resistant 
designs 

Environmental 
Threats 

Adverse environmental 
conditions that can affect 
system performance or 
reliability 

Use of environmental 
monitoring and control 
systems 

 
Security 

Authentication 

Unauthorized access to 
systems or data due to weak or 
compromised authentication 
mechanisms 

Use of strong 
authentication 
mechanisms and access 
control policies 

Deadlines Miss 

Failure to meet real-time 
system deadlines due to 
resource exhaustion or other 
issues 

Use of real-time 
scheduling and 
resource allocation 
algorithms 

 
3. Machine Learning Techniques for Intrusion Detection: 

 
Some commonly used machine learning techniques for IDS in CPS include supervised learning 
algorithms such as decision trees, support vector machines, and neural networks. Unsupervised 
learning techniques such as clustering and anomaly detection are also frequently used to 
identify unusual behavior that may indicate an attack. Additionally, reinforcement learning can 
be used to optimize IDS responses over time based on feedback from the system. 
. 
Decision Trees: Decision trees are a type of supervised learning algorithm that can be used for 
classification tasks. A decision tree consists of a tree-like structure in which internal nodes 
represent tests on attributes, and branches represent the possible outcomes of those tests. The 
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leaves of the tree represent the classifications or decisions. Decision trees are often used in 
intrusion detection because they are easy to interpret and can handle both categorical and 
continuous data. The algorithm can be used for classification or regression tasks. It creates a 
tree-like model of decisions and their possible consequences based on the input features. 
The general equation for a decision tree is: 
y = f(x) 
 Where: 

 y is the predicted output or target variable 
 x is the input features or independent variables 
 f is a function that maps the input features to the predicted output 

The function f is represented by a tree structure, where each internal node represents a decision 
based on a specific feature, and each leaf node represents a class label or a regression value. 
The decision tree algorithm works by recursively splitting the data into subsets based on the 
most informative feature, which maximizes the separation between the classes or the variance 
in the regression values. This process continues until a stopping criterion is reached, such as a 
maximum depth, a minimum number of samples per leaf, or a maximum impurity reduction. 
Once the tree is built, the prediction for a new instance is made by traversing the tree from the 
root to a leaf node, based on the values of its features, and returning the corresponding class 
label or regression value. 
 
Random Forests: Random forests are an ensemble learning method that consists of multiple 
decision trees. Each tree is trained on a random subset of the training data, and the final 
prediction is made by averaging the predictions of all the individual trees. Random forests are 
often used in intrusion detection because they can handle large datasets and are less prone to 
over fitting than individual decision trees. 
 
Naive Bayes: Naive Bayes is a probabilistic algorithm used for classification tasks, including 
intrusion detection. The general equation for Naive Bayes in intrusion detection can be 
expressed as: 
P(c|x) = (P(x|c) * P(c)) / P(x) 
Where: 

 P(c|x) is the posterior probability of the class c given the input features x 
 P(x|c) is the likelihood of observing the input features x given the class c 
 P(c) is the prior probability of the class c 
 P(x) is the probability of observing the input features x (the evidence) 

In intrusion detection, the input features x represent the network traffic or system events that 
need to be classified into different attack categories or normal behavior. The class c represents 
the attack category or the normal behavior class. 
The Naive Bayes algorithm assumes that the input features are conditionally independent given 
the class c, which means that the probability of observing all the features together is equal to 
the product of their individual probabilities: 
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P(x|c) = P(x1|c) * P(x2|c) * ... * P(xn|c) 
This assumption simplifies the calculation of the likelihood term and allows the 

algorithm to handle high-dimensional data with many features. The prior probability P(c) is 
usually estimated from the training data by counting the number of instances for each class and 
dividing by the total number of instances. The likelihood term P(x|c) is estimated using a 
probability distribution function, such as the Gaussian distribution for continuous features or 
the multinomial distribution for discrete features. Once the posterior probability P(c|x) is 
calculated for each class, the final prediction is made by selecting the class with the highest 
probability. 

 
Support Vector Machines (SVMs): are a popular machine learning algorithm used for 
classification and anomaly detection in intrusion detection systems. The basic equation for 
SVM is: 
y = w^T x + b 
Where: 

 y is the predicted output or decision boundary 
 w is the weight vector that determines the orientation of the decision boundary 
 x is the input feature vector 
 b is the bias term that shifts the decision boundary 

In SVM, the goal is to find the hyperplane that maximally separates the two classes while 
minimizing the classification error. The hyperplane is defined by the weight vector w and the 
bias term b, and its orientation is perpendicular to the margin, which is the distance between 
the hyperplane and the closest data points from both classes. 
The optimal hyperplane is found by solving the following optimization problem: 
minimize: (1/2) * ||w||^2 + C * sum_i=1^n xi subject to: y_i(w^T x_i + b) >= 1 - xi, for i = 
1,2,...,n 
Where: 

 ||w|| is the L2-norm of the weight vector 
 C is the penalty parameter that controls the trade-off between maximizing the margin 

and minimizing the errors 
 xi are the slack variables that allow for soft-margin classification and handle non-

separable data points 
 y_i is the class label of the i-th training instance (+1 or -1) 
The optimization problem is typically solved using quadratic programming or gradient 

descent algorithms, which find the optimal values of w and b that maximize the margin and 
satisfy the constraints. 

In practice, SVM can be extended to handle non-linearly separable data by using kernel 
functions that map the input features into a higher-dimensional space, where linear separation 
is possible. The kernel function is a similarity measure that computes the dot product between 
the transformed feature vectors, without explicitly computing the transformation. The most 
commonly used kernel functions in SVM for intrusion detection include the Radial Basis 
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Function (RBF) kernel, the Polynomial kernel, and the Sigmoid kernel, which can capture 
complex and non-linear relationships between the input features. 
 

While the machine learning algorithms mentioned above can be effective for intrusion 
detection in cyber-physical systems, they have certain limitations. For example, decision trees 
can be sensitive to noisy or irrelevant features, SVM can be computationally expensive for large 
datasets, and Naive Bayes assumes that features are independent, which may not always be 
true. Recurrent neural networks (RNNs) can overcome some of these limitations by leveraging 
their ability to model sequential data. RNNs can capture temporal dependencies between events 
and identify patterns in time series data, making them well-suited for intrusion detection in 
CPS. RNNs can be trained on a sequence of events, such as network traffic or system log data, 
and learn to recognize patterns in the data that are indicative of a potential intrusion. Unlike 
other machine learning algorithms, RNNs can handle variable-length input sequences and can 
retain memory of past events in order to make predictions about future events. This makes them 
particularly useful for detecting subtle or complex attack patterns that may span multiple events 
or occur over an extended period of time. One type of RNN that has been used for intrusion 
detection is the Long Short-Term Memory (LSTM) network. LSTMs have an internal memory 
cell that can maintain information over long periods of time and can selectively forget or 
remember information based on the input data. LSTMs can be trained on sequences of events 
and can learn to identify abnormal behavior patterns that may be indicative of an intrusion. 
 

3.1 Deep Recurrent Neural Networks (DRNNs)  
 

DRNN can be used in IDS for Cyber-Physical Systems (CPS) to detect and prevent cyber 
attacks on networked devices and systems. Here is a more detailed explanation of how deep 
RNNs can be used in IDS for CPS 
Preprocessing the Data:  
The first step is to preprocess the network traffic data to remove irrelevant features, convert it 
to a suitable format, and normalize it for input to the deep RNN. This may involve data cleaning, 
feature extraction, and data normalization techniques. 
Architecture Selection:  
The next step is to select an appropriate deep RNN architecture for the IDS. This may involve 
selecting the number of layers, the type of RNN cell to use (such as LSTM or GRU), and other 
hyperparameters. 
Training:  
The deep RNN is then trained on the preprocessed network traffic data using a suitable 
algorithm, such as back propagation through time (BPTT). The goal of training is to optimize 
the network's weights and biases to minimize the detection error rate. 
Testing and Validation: After training, the deep RNN is tested and validated on a separate set 
of network traffic data. This step is important to ensure that the model is not overfitting to the 
training data and is able to generalize well to new, unseen data. 
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Deployment:  
Once the deep RNN has been trained and validated, it can be deployed in the CPS environment 
to detect and prevent cyber attacks. The deep RNN is continuously fed with network traffic 
data, and if it detects any anomalous patterns or behavior, it raises an alarm or takes other 
corrective actions. Overall, using a deep RNN for IDS in CPS can be an effective way to detect 
and prevent cyber attacks on networked devices and systems. However, it requires careful 
selection of the network architecture, training data, and validation techniques to ensure that the 
model is accurate and reliable in detecting cyber threats. 
 

Fig.3 Structure of Deep RNN 
Deep Recurrent Neural Networks (RNNs) can be trained using weights and biases equations to 
optimize the network's parameters for better accuracy in detecting and preventing cyber attacks. 
Here is a brief explanation of how the training process works: 
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 Forward Pass: During the forward pass, the input data is fed into the deep RNN, and 
the network calculates its output. The output is then compared with the actual target 
output to calculate the loss function. 

 
 Backward Pass: During the backward pass, the network updates its parameters 

(weights and biases) to minimize the loss function using the gradient descent algorithm. 
The gradient of the loss function with respect to each parameter is calculated using 
backpropagation through time (BPTT) algorithm. 

Update Weights and Biases: Once the gradients have been calculated, the weights and biases 
are updated using the following equations: 

 Weight Update Equation: 𝑤_𝑖,𝑗 = 𝑤_𝑖,𝑗 - 𝜂 * ∂L/∂𝑤_𝑖,𝑗 
 Bias Update Equation: 𝑏_𝑗 = 𝑏_𝑗 - 𝜂 * ∂L/∂𝑏_𝑗 

where 𝑤_𝑖,𝑗 is the weight connecting the ith neuron in the current layer to the jth neuron in the 
next layer, 𝑏_𝑗 is the bias of the jth neuron in the next layer, 𝜂 is the learning rate, and ∂L/∂𝑤_𝑖,𝑗 
and ∂L/∂𝑏_𝑗 are the gradients of the loss function with respect to 𝑤_𝑖,𝑗 and 𝑏_𝑗, respectively. 
 Repeat: The forward pass and backward pass steps are repeated for each input in the 

training dataset until the network's parameters are optimized and the loss function is 
minimized. 

Training a deep RNN using weights and biases equations can be time-consuming, especially 
for large datasets and complex architectures. However, it is an effective way to optimize the 
network's parameters and improve the accuracy of IDS in CPS. 
 

4.  Matrices: 
Evaluation metrics are essential tools for assessing the effectiveness and performance of 
intrusion detection systems (IDS) in cyber-physical systems (CPS). These metrics are used to 
measure the accuracy, reliability, and efficiency of an IDS in detecting and classifying different 
types of attacks and anomalies. Commonly used evaluation metrics for IDS in CPS include true 
positive rate (TPR), false positive rate (FPR), precision, recall, F1-score, area under the curve 
(AUC), and detection time. These metrics provide insights into the strengths and weaknesses 
of an IDS and help in improving its overall effectiveness and efficiency.  
 
 True Positive (TP): The number of correctly identified attacks. 

TP = Number of attacks correctly identified 
 
 False Positive (FP): The number of normal activities that are mistakenly identified as 

attacks. 
FP = Number of normal activities incorrectly identified as attacks 

 True Negative (TN): The number of correctly identified normal activities. 
TN = Number of normal activities correctly identified 

 False Negative (FN): The number of attacks that are missed by the IDS. 
FN = Number of attacks missed by the IDS 
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 Accuracy: The percentage of correctly classified instances (TP + TN) out of the total 

number of instances. 
Accuracy = (TP + TN) / (TP + TN + FP + FN) 

 
 Precision: The proportion of true positives out of the total number of detected instances 

(TP + FP). 
                                          Precision = TP / (TP + FP) 
 
 Recall: The proportion of true positives out of the total number of actual positive 

instances (TP + FN). 
                                         Recall = TP / (TP + FN) 
 F1 Score: The harmonic mean of precision and recall, which provides a balance 

between precision and recall. 
                F1 Score = 2 * (Precision * Recall) / (Precision + Recall) 
 
 Area Under the Curve (AUC): The area under the Receiver Operating Characteristic 

(ROC) curve, which represents the trade-off between true positive rate (TPR) and false 
positive rate (FPR). AUC is typically calculated by plotting the TPR against the FPR at 
various threshold values, and then integrating the area under the curve. 

 
 Detection Rate (DR): The proportion of actual positive instances that are detected by 

the IDS (TPR). 
DR = TP / (TP + FN) 

 
 False Positive Rate (FPR): The proportion of normal activities that are mistakenly 

identified as attacks. 
FPR = FP / (FP + TN) 

 
 Mean Time to Detection (MTTD): The average time taken by the IDS to detect an 

attack. 
MTTD = (Time of detection of all attacks - Time of occurrence of all 
attacks) / Number of attacks detected 

These evaluation metrics are used to measure the performance of IDS in detecting and 
preventing cyber attacks in CPS. The choice of evaluation metrics depends on the specific 
research question and the characteristics of the CPS environment being studied. It is important 
to carefully select appropriate evaluation metrics to ensure a fair and accurate assessment of the 
IDS performance. 
 
4.1 Data set Used for Intrusion Detection: 
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 KDD Cup Dataset: The KDD Cup dataset is one of the most commonly used datasets 
for IDS in CPS. It is a benchmark dataset that was created as part of the DARPA 
Intrusion Detection Evaluation Program. It contains network traffic data from a 
simulated military network environment, including both normal and attack traffic. The 
dataset is often used to evaluate the performance of IDS algorithms. 

 NSL-KDD Dataset: The NSL-KDD dataset is a refined version of the original KDD 
Cup dataset. It was created to address some of the limitations of the original dataset, 
such as redundancy and irrelevance of some features. The NSL-KDD dataset contains 
network traffic data that has been preprocessed and labeled with attack types. 

 CICIDS2017 Dataset: The CICIDS2017 dataset is a recent dataset that was created for 
evaluating IDS in CPS. It contains network traffic data from a real-world traffic 
monitoring system, including both normal and attack traffic. The dataset includes a wide 
range of attacks, including denial-of-service (DoS), remote-to-local (R2L), and user-to-
root (U2R) attacks. 

 UNSW-NB15 Dataset: The UNSW-NB15 dataset is another popular dataset for IDS in 
CPS. It contains network traffic data from a real-world environment, including both 
normal and attack traffic. The dataset includes a range of attacks, such as DoS, probing, 
and malware. It is often used to evaluate the performance of machine learning-based 
IDS algorithms. 

 IoT-23 Dataset: The IoT-23 dataset is a recent dataset that was created for evaluating 
IDS in Internet of Things (IoT) environments. It contains network traffic data from 23 
different IoT devices, including both normal and attack traffic. The dataset includes a 
wide range of attacks, such as DoS, reconnaissance, and malware. 

 
Table 3 Comparative Analysis of ID in CPS using RNN 

 

# Paper Approac
h 

Dataset Accurac
y 

F1-
scor

e 

Precisio
n 

Recal
l 

AU
C 

Limitatio
ns 

1 Chen et 
al. 

(2018) 

LSTM CICIDS201
7 

98.7% 0.98
9 

0.984 0.994 N/A Limited 
feature set 

2 Ahmed 
et al. 

(2018) 

LSTM KDDCUP9
9 

99.27% N/A N/A N/A N/A Limited 
dataset 

3 Iqbal et 
al. 

(2019) 

GRU UNSW-
NB15 

98.56% 0.98
6 

0.984 0.989 N/A Limited 
feature set 

4 Javadi 
et al. 

(2019) 

LSTM CICIDS201
7 

98.75% 0.98
7 

0.983 0.991 N/A Limited 
feature set 
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5 Li et al. 
(2019) 

LSTM CICIDS201
7 

99.3% 0.99
3 

0.991 0.995 0.99
8 

Limited 
dataset 

6 Huang 
et al. 

(2020) 

LSTM  CICIDS201
7 

99.1% 0.99
0 

0.986 0.994 N/A Limited 
evaluation 
metrics 

7 Tang et 
al. 

(2020) 

LSTM  UNSW-
NB15 

99.28% 0.99
1 

0.988 0.994 N/A Limited 
dataset 

8 Liu et 
al. 

(2020) 

LSTM CICIDS201
7 

99.6% 0.99
5 

0.994 0.996 0.99
8 

Limited 
evaluation 
metrics 

9 Omer 
et al. 

(2021) 

LSTM  CICIDS201
7 

99.21% 0.99
2 

0.989 0.995 N/A Limited 
dataset 

1
0 

Lim et 
al. 

(2021) 

GRU CICIDS201
7 

99.1% 0.99
0 

0.986 0.994 0.99
8 

Limited 
feature set 

1
1 

Zhu et 
al. 

(2019) 

LSTM CICIDS201
7 

99.3% 0.99
3 

0.991 0.995 0.99
7 

Limited 
dataset 

1
2 

Mishra 
et al. 

(2020) 

LSTM 
with 
CNN 

UNSW-
NB15 

98.59% N/A N/A N/A N/A Limited 
evaluation 
metrics 

1
3 

Chen et 
al. 

(2020) 

LSTM CICIDS201
7 

99.4% 0.99
4 

0.994 0.994 N/A Limited 
feature set 

 
5. Future directions and challenges for the intrusion detection in CPS: 

Intrusion detection in Cyber-Physical Systems (CPS) is an ever-evolving field of research, and 
there are several future directions that researchers can explore to improve the accuracy, 
effectiveness, and reliability of intrusion detection systems. One such direction is the 
integration of physical and cyber security measures to provide a more holistic approach to 
intrusion detection. This can involve the use of hybrid approaches that combine the strengths 
of different techniques, including machine learning, rule-based, and signature-based 
approaches. Another important future direction for intrusion detection in CPS is the 
development of real-time intrusion detection systems that can detect attacks as soon as they 
occur and take immediate actions to mitigate the impact. This can involve the use of advanced 
technologies such as blockchain and distributed intrusion detection approaches that can detect 
attacks across multiple components of the system. Privacy-preserving intrusion detection is also 
an important area of research, as privacy is a significant concern in CPS, especially in systems 
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that collect sensitive data. Intrusion detection systems that can detect attacks while preserving 
the privacy of the system users can help address this issue. Finally, proactive intrusion detection 
is another future direction that researchers can explore. Proactive intrusion detection involves 
identifying vulnerabilities in the system before an attack occurs and taking preventive measures 
to reduce the risk of attacks. Developing proactive intrusion detection systems that can identify 
potential vulnerabilities in CPS and take actions to mitigate the risks before an attack occurs 
can help improve the overall security and reliability of this system. 
Future directions: 

 Integration of physical and cyber security measures: This involves integrating physical 
security measures, such as cameras and motion sensors, with cyber security measures, 
such as intrusion detection systems, to provide a more holistic approach to intrusion 
detection. 

 Hybrid approaches: This involves combining the strengths of different techniques, such 
as machine learning, rule-based, and signature-based approaches, to improve the 
accuracy and effectiveness of intrusion detection in CPS. 

 Real-time intrusion detection: This involves developing intrusion detection systems that 
can detect attacks as soon as they occur and take immediate actions to mitigate the 
impact. 

 Privacy-preserving intrusion detection: This involves developing intrusion detection 
systems that can detect attacks while preserving the privacy of the system users, 
especially in systems that collect sensitive data. 

 Proactive intrusion detection: This involves identifying vulnerabilities in the system 
before an attack occurs and taking preventive measures to reduce the risk of attacks. 

 Adversarial machine learning: This involves using machine learning algorithms that are 
robust against adversarial attacks to improve the resilience of intrusion detection 
systems against attacks. 

 Use of blockchain technology: This involves using blockchain technology, which 
provides a secure and tamper-proof way of storing and sharing data, for intrusion 
detection in CPS to improve the security and reliability of the system. 

 Distributed intrusion detection approaches: This involves developing intrusion 
detection approaches that can detect attacks across multiple components of the system, 
especially in CPS that involve distributed systems. 

 Human-in-the-loop intrusion detection: This involves incorporating human expertise 
and decision-making capabilities in intrusion detection systems to improve the accuracy 
and effectiveness of the system. 

 Holistic approach to intrusion detection: This involves taking a holistic approach to 
intrusion detection by considering the physical, cyber, and human aspects of the system, 
as well as the interactions between these aspects. 

Challenges: 
There are several challenges that researchers and practitioners face in intrusion detection for 
Cyber-Physical Systems (CPS). Here are some of the significant challenges: 
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 Complexity: CPS is a complex and heterogeneous system that involves multiple 
components with different levels of security, functionality, and communication 
protocols. Developing intrusion detection systems for such systems is a challenging 
task. 

 Real-time detection: Intrusion detection in CPS needs to be done in real-time to 
minimize the impact of an attack. The detection process must be fast and accurate to 
identify an attack as soon as it happens. 

 High false alarm rate: Intrusion detection systems often produce a high rate of false 
alarms, which can be challenging for system operators to handle. False alarms can also 
lead to a loss of trust in the system. 

 Privacy concerns: In CPS, data is collected from various sensors, and the privacy of the 
data must be protected. It can be challenging to develop intrusion detection systems that 
can detect attacks while preserving the privacy of the data. 

 Adversarial attacks: Adversarial attacks are a significant challenge in intrusion detection 
for CPS. Adversaries can develop attacks that can bypass or deceive the intrusion 
detection system, and it can be challenging to develop systems that are robust against 
such attacks. 

 Limited resources: CPS devices often have limited resources, including computational 
power, memory, and battery life. Intrusion detection systems must be developed, 
keeping in mind these resource constraints. 

 Integration challenges: Integrating intrusion detection systems with existing CPS can 
be challenging, especially if the systems are developed using different technologies, 
protocols, and standards. 

 Lack of data: Intrusion detection systems require large amounts of data for training and 
validation, and it can be challenging to obtain sufficient data for developing accurate 
and effective intrusion detection systems. 

Addressing these challenges requires a multi-disciplinary approach involving experts from 
various fields, including cyber security, control systems, and data science. 
 

6. Conclusion: 
Anomaly-based intrusion detection using deep recurrent neural networks (RNNs) shows 
promise for detecting attacks in Cyber-Physical Systems (CPS). The survey of literature on this 
topic revealed that deep RNNs can effectively learn the complex temporal patterns in CPS data 
and detect anomalous behavior that may indicate an attack. Anomaly-based intrusion detection 
using deep RNNs offers several advantages over traditional rule-based and signature-based 
approaches, including the ability to detect unknown attacks and the ability to adapt to changing 
system behavior. However, there are several challenges that must be addressed, such as dealing 
with the high dimensionality and noise in CPS data and addressing the trade-off between false 
positives and false negatives. Overall, anomaly-based intrusion detection using deep RNNs is 
a promising area of research for improving the security and resilience of CPS. Further research 
is needed to address the challenges and limitations of this approach and to develop more robust 
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and effective intrusion detection systems for CPS. With continued development and refinement, 
anomaly-based intrusion detection using deep RNNs has the potential to make CPS more secure 
and reliable, ensuring the safe and efficient operation of these critical systems. 
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