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Abstract. Machine learning has become one of the most prominent applications in various 
fields for the development of high end systems. This trend of machine learning applications 
usage made the attackers to choose the machine learning applications models and induce 
different type of attacks like data poisoning attacks, adversarial attacks, Obfuscation Attacks, 
Side channel attacks, Model Inversion attacks, MITM attacks. It is very essential to provide 
security to the machine learning models by protecting the integrity, confidentiality and 
availability of the training data, testing data of machine learning models. Through our study 
we found that the data poisoning attacks are the majority of the attacks attempted by the 
attackers on machine learning systems. In this paper we carefully analysed data poisoning 
attacks from the existing models and by our investigation we proposed the most possible 
defences and countermeasures to Data Poisoning attacks. 

Keywords: Machine learning, Data poisoning attacks, integrity, confidentiality, availability, 
brute force attacks. 

1 Introduction  

Today machine learning has become a most prominent application in the development of AI 
systems.  The trend of Artificial Intelligence all over the world gave rise to the development of 
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different algorithms to train the machines. This vast usage of machine learning applications 
gave a platform for the attackers to introduce the attacks using the machine learning 
applications. To ensure security from the attacks on machine learning applications, "Security 
in Machine Learning" has become a major area to work on for the researchers.  

 In this current machine learning era, machine learning security has grabbed the attention 
all over the world. The dependency of automated systems using machine learning systems is 
increasing; as a result, security in machine learning becomes the need of the day. The security 
on machine learning applications or systems can be ensured by considering the basic security 
goals achieved by the system. The security goals [2] i.e. CIA (confidentiality, integrity and 
availability) ensures the security level of the machine learning application. 

 In this paper we analysed the various attacks which violated security goals on machine 
learning systems. In our analysis we tried to identify the entry point of attacks and we found 
few major entry points by which these attacks can be initiated on machine learning systems. 
The identified major entry points are (i) attacks using training data (ii) attacks by duplicating 
models (iii) MITM attacks. The attacks using training data are considered as integrity breach, 
attacks by duplicating models considered as confidentiality and availability breach and MITM 
attacks are considered as integrity breach. 

 We analysed the following attacks from the previous researches and identified the major 
attacks. The attacks are (i) Data poisoning attacks [3] [4] [5], (ii) adversarial attacks [6][7][8], 
Obfuscation Attacks [9] [10], Side channel attacks [11], Model Inversion attacks [12], MITM 
attacks [13]. In this analysis we found that majority of the attacks on machine learning systems 
are done using Data Poisoning attacks using different standard reports [28]. By considering this 
reports we carefully investigated the data poisoning attacks.  

       This paper is organized in the following way, Section 2 provides the related work in 
security in machine learning, Section 3 provides Poisoning attacks and attacker abilities Section 
4 provides the most possible defences and countermeasures to data poisoning attacks. Finally, 
section 5 provides the conclusion.  

2  Related Work  
Chenglin Miao et al [14] worked on data poisoning attacks by attackers in crowd sensing 

systems and proposed an enhanced mechanism to reduce the data poisoning attacks. They used 
two attacks in their proposed work i.e. availability attack, target attack and built a practical 
approach for crowd sensing system evaluation. 

Kui Ren et al [15] worked on adversarial attacks and investigated threat models which 
distinguishes black-box, white-box and gray-box attacks. In black box threat model challenger 
depends only on query access, in gray box threat model the challenger depends only structure 
of target model. In whitebox threat model the challenger gains full knowledge of target model. 
This paper has limitations as the threat method requires large number of queries. 

Sebastian Banescu et al [16] worked on Obfuscation Attacks and proposed an approach for 
extracting program features that are prevalent in predicting the automated attacks for protecting 
the software. They built a test regression model based on symbolic execution in order to predict 
the obfuscation attacks. In their approach the main limitation is  "lack of space" so they 
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represented with limited parameters to obtain better results. 
Maria Mushtaq et al [ 17] worked on detection of side channel attacks by examining the 

usage of machine learning techniques on Intel x86 architecture to detect Cache based side 
channel attacks. Finally, they produced the minimum selection metrics used for machine 
learning techniques in order to carry-out run-time Cache based side channel attacks detection 
in real time scenario. 

Seira Hidano et al [18] worked on Model Inversion attacks and proposed a general model 
inversion framework. Their work concentrated towards extracting the supplementary 
information which is available to the challenger. This paper also shows that sensitive attributes 
can be gathered by mining non sensitive attributes which modifies the machine learning model 
into targeted model using the techniques of data poisoning. This models limitation is it requires 
previous distribution p as supplementary information. 

Cheng-Yu Cheng et al [19] worked on MITM attacks and proposed a model which uses 
network packet analysis, techniques in machine learning to calculate the difference in packet 
Round-trip-time (RTT) between user and receiver. The limitation in this model is if the attacker 
uses wired connection and client uses the wireless connection then it would be difficult to 
calculate the RTT. 

M. Aladag, et al [29] This work shows how an attacker can access the data by using 
manipulation i.e. the attacker manipulates abnormal behaviour as normal behaviour The 
limitation of this model is that this model is much dependent on auto-encoder model. 

N. Baracaldo et al [30] This work more concentrates towards detecting the IoT devices. The 
proposed method is a novel method for detecting and also filtering the poisonous data in order 
to train the supervised learning models which is suitable for IoT environments. 

3  Salient Findings from analysis 

In this study of analysing the attacks done on machine learning algorithms we found that the 
data poisoning attacks are the major attacks in machine learning systems by which the attacker 
attacks the training models which affect the entire machine learning process. There are different 
research efforts made by the different researchers [19] [20] [21] [22] in reducing this attacks 
but still these data poisoning attacks stands out as the major research work till date. 

 We carefully analysed the data poisoning attacks and found the attacker capabilities to 
attack the machine learning systems. Data poisoning attacks can be done by the attackers in 
two ways (i) data poisoning before training the model (ii) data poisoning post building of the 
model. An attacker uses different type of tricks or attempts to induce the poisoning into the 
training data of machine learning system. The following are the different type of attempts or 
abilities of the attacker to attack machine learning systems they are Data manipulation, Logic 
corruption, Transfer learning, Data injection. 
 

Data manipulation: In this type of attack, attacker will manipulate the training data by 
modifying, removing or adding the data to the trained datasets. Considering the scenarios of 
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new labels in the training models attackers try to gain the information and change the labels 
using random label flipping or heuristics.  

Logic corruption: In this type of attack, attacker modifies the algorithm which is used to 
train the machine. This is the most dangerous attack as it completely changes the mode of the 
machine. 
 

Transfer learning: In this type of attack, attacker gains the information related to the model 
which is reused as transfer learning model for different machines. These types of attacks are 
also called as MITM attacks. 
 

Data injection: In this type of attack attacker injects the data into training datasets and 
changes the mode of the training model. This kind of attack is similar to data manipulation 
where data manipulation attacks are more concentrated towards modifying the training labels, 
here in data injection attacks data inside the trained datasets are modified added or removed. 

4  Defences and Countermeasures to Data poisoning attacks 

In this study we analysed the most common way used by the attackers to attacks machine 
learning systems using data poisoning attacks. 
 

 
Fig. 1. Model for attacking machine learning system 

 
It can be observed from the figure that attackers in the first phase try to gather information 

using various sniffing tools and retrieve the information which can be useful for attacking the 
system. The information can be related to trained datasets. Finally, the action plan is performed 
by the attacker to attack in either of the two ways (i) data poisoning before training the model 
(ii) data poisoning post building of the model. Data poisoning attacks are the attacks which are 
dependent on the knowledge gained by the attackers in the initial phase. 
 
Attackers abilities to gain Knowledge: Here, considering the views of the (i) attacker can 
attack as (A1) by modifying the retrieved trained datasets, (ii) attackers can attack as (A2) by 
modifying the algorithm (iii) attackers can attack as (A3) by brute force attack. 
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Attacker attacking capabilities: 
 Black-box attacks: The attackers does not gain any information related to trained datasets 

but performs the attacks using the brute force attacks. 
 Graybox attacks: The attackers perform this type of attacks using the gained information 

or the brute force attacks. 
 Whitebox attacks: The attacks gain the information related to trained datasets, algorithms 

and applies few injection techniques.  
 
Attack Specificity: This refers to the exact data points targeted by the attacker. 
 
Defences:  
By analysis, it came to know that attacker can attack by A1, A2 and A3 ways.  

 Defence for A1: Considering these 3 scenarios from the above the input features which forms 
a collection for training datasets needs to be verified. The possible way of verifying the input 
features collection can be done by assigning the weights to the input. By considering weighted 
values cost of each input feature can be obtained which can be used to detect the actual data 
collection required for the training datasets. 

 Defence for A2: In order to check whether the algorithm is modified or not. A checksum is 
generated to the specific algorithm and applied. In verification process whether the algorithm 
has been modified or not checksum matching is used. 

 Defence for A3: Brute force attacks can be avoided by testing the network flow [27]. The 
collected data is considered as labeled by professional network experts and then each flow is 
identified whether it leads to a brute force attack. 

 
5. Conclusion 

The enormous usage of machine learning models in the present society has made this area 
popular in various scientific and research purposes. This Popular usage of machine learning 
systems has become a platform for the attackers to attack by introducing malicious activities 
using machine learning systems. In this paper we analysed the different attacks done on 
machine learning models and we found that the data poisoning attacks are the major attacks in 
machine learning systems by which the attacker attacks the training models which affect the 
entire machine learning process. By our careful investigation on data poisoning attacks we 
presented the most possible defences and countermeasures to data poisoning attacks. 
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